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A Theory of 1 / f  Current Noise Based on 
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Asymptotic solutions for the Montroll-Weiss continuous-time random 
walk that are appropriate to the conduction of carriers through a resistive 
medium are utilized to show that, when carrier drift occurs by virtue of 
an applied electric field, a l / f  type of spectral density may be exhibited in 
the current noise. When the applied field is removed the spectral density 
is given by Nyquist's theorem. 
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1. I N T R O D U C T I O N  

An understanding of the origins of  spectral densities in current noise of  the 
form f - r ,  where f is the frequency and y is a constant around unity, is 
especially important for predicting the noise characteristics of  many semi- 
conductor devices, though it occurs experimentally in other areas, such as 
the carbon microphone (1,~) and nerve cells. Much previous theoretical work 
has tended to involve a wide range of  time constants in the conducting material 
with a reluctance to allow the possibility of  extremely large trapping times. (!) 
This naturally results in a flat spectral density at sufficiently low frequencies. 
(This is not supported experimentally(8); the spectral density is typically in 
the form of a power law even down to frequencies of  10 -s  Hz.) One of the 
reasons for this is a difficulty with Parseval's theorem, which, when applied 
directly to densities of  the form f - r  with 9'/> 1, indicates an infinite total 
noise power or variance in the current due to a low-frequency catastrophe. 
This in turn implies an infinite noise energy even over finite times. 

Another unsatisfactory feature of  some theories is the way in which 
distributions of  time constants are introduced and the lack of a well-defined 

1 Centre for Radio Science and Physics Department, University of Western Ontario, 
London, Ontario, Canada. 

149 

�9 1976 Plenum Publishing Corporat ion,  227 West  17th Street, New York,  N.Y.  1001 I.  N o  part  o f  this publica- 
t ion may  be reproduced,  stored in a retr ieval  system, or  transmitted,  in any form or  by any means,  electronic 
mechanical,  photocopying,  microfilming, recording,  or  otherwise, without written permission of  the publisher. 



150 J, K. E. Tunaley 

physical model with its associated stochastic process. These problems can to 
a large extent be overcome by using the Montroll-Weiss (4~ (MW) random 
walk as a model for conduction. This has the advantage that the asymptotic 
Green's functions for large times are restricted to two types, assuming that 
a steady drift of  the carriers can occur. <5~ Since the Green's functions can be 
expressed in terms of stable distributions, this is consistent with the ideas of 
Mandelbrot, (6) who first developed a theory of 1If  noise based on their in- 
volvement. Subsequently Tunaley <7,a~ has derived f - r  densities showing how 
stable densities can arise physically, though the model is rather crude. The 
results here will turn out to be the same as in Refs. 7 and 8 but the derivation 
is different. 

The model is one in which the carriers move classically and independently. 
For the sake of simplicity we assume that the motion of each carrier can be 
represented as a progression of hops in which all the spatial jumps are 
independent of each other and independent of the time required to perform 
each hop. The jump vectors and holding times are described by probability 
distributions that are identical (respectively). These conditions, necessary for 
the validity of the MW formalism, are not likely to be met in real materials. 
For example, in a material consisting of a collection of closely spaced but 
randomly placed potential wells there is a likelihood of many jumps between 
those sites that are closer to one another than average: This will remove the 
independence of the jump vectors. However, if we are prepared only to 
examine the asymptotic behavior of the noise spectral density at low fre- 
quencies, it is likely that such reciprocation can be neglected and a scaling 
procedure effected to simplify the stochastic process. (Such a scaling has been 
performed by Tunaley (5~ to deduce the asymptotic properties of the MW walk.) 
We then consider many jumps between large blocks of the material and, if 
these are sufficiently large, it is at least plausible that the random walk tends 
to the MW type. Unfortunately, we cannot yet identify the relevant 
constants in the MW walk in terms of the basic physical parameters of the 
system. 

2. NOISE SPECTRAL DENSITY:  N Y Q U I S T ' S  T H E O R E M  

For a stationary stochastic process the one-sided current noise spectral 
density P ( f )  is given by the Weiner-Khintchin formula: 

fo P ( f )  = 4 < I(t)I(O) > cos cot dt (1) 

Here the average is over an ensemble of possible records so that P ( f )  itself 
is really an expected value. In terms of the velocity of the particles and if all 



A Theory of 1 i f  Current Noise Based on a Random Walk  Model 151 

carriers are independent, we have for measurements parallel to the z axis 
of the resistor 

4ne2A ~o 
P ( f )  = l 2o < vz(t)v=(O) > c o s  o~t dt (2) 

where n is the carrier number density, e is the charge, A is the cross-sectional 
area of  the resistor, and l its length. Equation (2) is not convenient for the 
present purposes and it is useful to replace the velocity covariance and work 
in terms of  displacement. The theory has been given by Scher and Lax (9~: 

_ 2ne2A~o2 (~o 
P(U) = l J0 (cos o~t) < [z(t) - z(0)] 2 > d t  (3) 

The averaged quantity in Eq. (3) is the mean square displacement; denoting 
the Laplace transform of this by (Z2(s)), then 

P(f )  = - 2ne2Ao~2(Re(Z2(ioJ)))/l (4) 

The appropriate Green's function for the MW walk G(r, t) is defined by 

G(r, t) dr = P{carrier is located in [r, r + dr] at time t I 

carrier was located at r = 0 at t = 0} 

This differs from that originally derived by Montroll and Weiss in that the 
starting time must now not correspond to a jump into the initial location: 
The carrier can already be there. The MW walk has been generalized (1~ to 
include the effect and its Fourier-Laplace transform is given by 

1 - h(s) + a(k)[h(s) - ~b(s)] (5) 
a ( k ,  s )  = s[1 - ~(k)~(s) ]  

where ~(k) is the characteristic function of the probability distribution of 
the individual hop vectors and ~b(s) is the Laplace transform of the probability 
density of  the holding times. The quantity h(s) is the transform of  the first 
waiting time density, which is  included so that G(k, s) is not restricted to 
situations where a jump occurs exactly at time t = 0. 2 The mean square 
displacement has been given by Tunaley(l~ 

a2h 21z2h~b 
(Z2(s)) = s(1 - ~b) + s(1 - ~b~ (6) 

where t* and cr 2 are the mean displacement and mean square displacement in 
the z direction for a single jump. For  steady conditions corresponding to a 
constant electric field we can put (x~ 

h = (1 -- 4,)l~s (7) 

a It is my understanding that the inclusion of h(t) is regarded by some workers as 
controversial. 
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where c~ is the mean holding time, which is supposed finite so that drift can 
take place. This yields 

cr 2 2tz~b 
( z ~ ( s ) )  = ~s - z  + ~s~(1 - 40 (8) 

The effect of the first term is straightforward. If  there is no drift, so that 
tz = 0 and cr 2 = a0 2 (which is just the variance of a single jump displacement), 
the current noise spectral density is given by 

P ( f )  = 2ne2Acro2[lc~ (9) 

Noting that the ordinary diffusion coefficient D is given by C12) 

O = ~o2/2<z (10) 
we have 

P ( f )  = 4ne2AD/ l  (11) 

The Einstein relation can now be invoked to write D in terms of K, the mo- 
bility, so that 

P ( f )  = 4ne2AkTK/ l  (12) 

where k is Boltzmann's constant and T is the temperature. On the other hand, 
the conductance is related to the mobility by 

g = ne2AK/l  (13) 

and combining these relations results in Nyquist 's theorem: 

P ( f )  = 4 k T g  (14) 

3. SPECTRAL DENSITY  W I T H  DRIFT  

If  an electric field is present so that a drift is produced, the second term 
in Eq. (8) is important. This may be regarded as a shot noise contribution. 
Noting that a 2 = ~r0 2 + t~ 2 and assuming that a0 2 is unchanged if the electric 
field is sufficiently small (this can be verified for Tunaley's ~12~ hopping model), 
we have 

2ne2Alz 2 1 + ~b(ito) (15) 
P ( f )  = 4 k r g  + t"-'-'-~ Re 1 - r  

However, the drift velocity 12 is t~/a, so that it becomes possible to express 
the coefficient of  the last expression in terms of the steady current lo through 
the resistor: 

P ( f )  = 4 k T g  + 2_Io___~z_ Re 1 + r (16) 
1 - r 

where N is the total number of carriers in the device. 
At low frequencies we can use an expansion ~11) for ~b(s). If  both the mean 

holding time and the mean square t3 are finite (with/~ >/ ~2), 

~b(s) ~ 1 - as + �89 z . . . .  , s ---> 0 (17) 
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Eq. (16) becomes 
21o 2/3 - ~2 
- -  - -  ~ ,  ~ 0 ( 1 8 )  P ( f )  ,,~ 4 k T g  + N a ' 

and the noise is "whi t e"  at low frequencies. It should be noted that the drift 
causes an increase in noise over that predicted b2r Nyquist's theorem. 

The other type of solution ~5> involves a situation where the variance 
of  the holding times is infinite and their distribution belongs to the domain 
of  attraction of a stable distribution with exponent v, with 1 < v < 2. In 
this ease c!1> we have 

~b(s) ~ 1 - a s  + f is  ~ . . . .  , s - -> 0 (19) 
and 

~b(iw) ~ 1 - ioJe~ + 3lco[~ e x p (  + i~w/2) ,  co --> O (20) 

The positive sign applies when oJ > 0 and the negative sign when o~ < 0;/3 
is now just a scale parameter indicating the width of the distribution in some 
sense. Inserting this expansion into Eq. (16) and omitting high-order terms 
in oJ, we obtain for the one-sided spectral density ( f  1> 0) 

4Io2~3  cos(~rv/2) 
oJ ---> 0 (21) P ( f )  ~ 4 k T g  - N[32co  ~ _ 2~ f l w  sin(m,/2) + c~%~ 2-~1' 

Thus P ( f )  diverges as oJ --> 0 and for suitable choice of  the parameters 
=,/3, and v may appear as f -Y over a range of frequencies of  many decades: 
Unlike the case of finite mean square, ~ and t3 can be varied independently 
but there are clearly some conditions involving o~ in the validity of the appli- 
cation of  the expansion in Eq. (20). Nevertheless, this result has been com- 
pared with a computer simulation of noise <18> for ~ ~ /3  with quite good 
agreement. It is consistent with experiment in that the spectral density is 
proportional to the square of the current and to the reciprocal of the volume 
(N).<I,~'~ 

Difficulties with Parseval's theorem at zero frequency do not occur since 
at very low frequencies P ( f )  is proportional to f~-2.  However, ~ may be so 
srnall (10 - l~ sec) that at practical frequencies the density may appear as 
f - ~  or f - 1 .  In this case a low-frequency limit is provided by the reciprocal 
of the length of  the record. 

Finally it may be noted that the denominator in Eq. (21) is always posi- 
tive, as can be seen by an examination of its zeros, which occur only for 
complex os. 

4. N O I S E  S T A T I S T I C S  

When there is no applied field and no drift, Nyquist's theorem holds 
for both types of ~b(s). According to the MW model of conduction, the current 
is in the form of a sequence of sharp spikes (positive and negtive) correspond- 
ing to the carrier hops. I f  an integrating device is employed to smooth out 
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the spikes (in practice, this will surely be the case) then the observed current 
can be defined for one carrier as 

io  = (22) 
where r is the integration time and ~. q is the sum of the areas under the indi- 
vidual current pulses in time r. Thus io is effectively determined by a MW 
random walk. The asymptotic probability of such a symmetric walk has been 
shown to be normally distributed C5~ and, noting that for a single carrier 

e2o 2 

(q2) = 12 (23) 

while the expected number of jumps is just equal to at ,  we see that c1~ 

e2cr 2 
(i~ = ~l%" (24) 

Summing over all independent carriers and employing the Einstein relation 
with Eq. (13), we have for the variance of the current 

( i  z) = 2kTg/r  (25) 

On the other hand, we can easily determine that the integrated current 
distribution is normal directly from Nyquist's theorem and the law of addi- 
tion of conductances. The connection of two similar conductors in parallel 
will yield a net conductance of twice the original value of each. Nyquist's 
theorem indicates that the random variable 

I = (I1 + 12) (26) 

has the same distribution as ~/211 and use of the scaling theory described by 
Feller ~11) shows that the distribution is stable with exponent 2, namely normal. 

With drift we again have a MW random walk to consider. If a and fi 
are finite, the current io, being a sum of independent random variables 
q/~-, is again normally distributed. If/z << or, the variance of' io will be essen- 
tially the same as given by Eq. (24), which leads to Eq. (25). On the other 
hand, with the expansion given by Eq. (20), the distribution of i0 tends to 
an asymmetric stable density with a long tail toward the origin of current. 
However, at finite times the variance of io is finite, so that, when we add 
together the effects of all electrons, the distribution of i will tend to be nor- 
mally distributed according to the central limit theorem. The mean value of 
i naturally corresponds to the dc current flowing being independent of 
time while the variance can be obtained from the equation ~1~ 

e2 [-~-1 ( ~  + 2~ 2~b 
Var(io) 

e2 [ ~ "  cc~-l{ 2P'2, g' 2P'2'~ ] (28) 
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Inserting the expansion in Eq. (19) into the transform part of  Eq. (28) and 
employing a Tauberian theorem, ~1) we deduce that at large 

e2a2 2e2/~2fl~'~ - ~ (29) 
Var(io) -+ ~T-ar + / 2 ~ r (  3 _ ~) 

and adding the effect of all carriers, we obtain 

Var(i) = 2kTg / r  + 21o2fl/~NP(3 - v)r ~-1 (30) 

The first term of Eq. (30) corresponds to the drift-free situation. How- 
ever, the second term is associated with the drift and will dominate the vari- 
ance of the current at sufficiently large integration times T. 

TO investigate the mean square current ("total  variance"), we define 

( I  2) = (l/q) i 2 at (31) 

(This is the quantity obtained through Parseval's theorem.) Suppose the 
pulses all have very small w i d t h ,  << ~. Then in the limiting case ,  -+ 0 

(12)  ~_ e2(a 2 + t~ 2) h a l  
12,2 , ~ (32) 

2ne2AkTK ne2Av 2 
- - -  ( 3 3 )  

/~ + l , 

where v is the drift velocity. Noting that 

lo2/N = ne2Av2/l (34) 

we have 

(I 2) ___ (2kTG/0  + (Io2~/N,) (35) 

Now from thermodynamics ~1~ we know that in the absence of  drift 

(12)  = k T / L  (36) 

where L is the inductance of  the device, so that we can identify 

L = , /2G (37) 

This is supported also by microscopic models of conduction315~ Thus 

( I  2) = ( k T / L )  + (Io2R/2NL) (38) 

The ratio of the shot noise to the Johnson noise component is interesting. 
Denoting this by ~, 

= Io2Ra/2WkT (39) 

o r  

~ (energy dissipated/carrier collision) (40) 
- 2 k T  
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It should be emphasized that this relation is valid only for E << a and 
is not particularly useful for 1I f  noise since the low-frequency part of the 
spectrum will form a negligible fraction of the total spectrum involved in 
the total fluctuation, 

5. D I S C U S S I O N  

The theory is qualitatively in agreement with the experimental evidence 
in respect to the noise spectral density, which is proportional to the square 
of the steady current and is inversely proportional to the number of carriers. 
The theory also predicts that the integrated current should be normally 
distributed and this is consistent with observations of Brophy. (3~ However, 
a more detailed comparison of Eq. (30) with experiment would be very 
valuable and should lead to the determination of v. 

On the other hand, transient photoconductivity measurements such as 
discussed by Montroll and Scher (16) and described by Scher (17~ would be 
invaluable in the determination of the validity of the basic premises and in 
the evaluation of the constants: The application of stable distributions with 
0 < v < 1 has been quite successful in exploring diffusion in some types of 
materials. 
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